

Automation of Space Inventory Management

Consultative Committee for Space Data Systems October 2010

Patrick W. Fink, Ph.D., Andrew Chu, Richard J. Barton, Ph.D. Raymond S. Wagner, Ph.D., Phong H. Ngo (NASA-JSC)

Kevin K. Gifford, Ph.D. (UC, Boulder)

Overview

- Space-Based Inventory Management
 - Current state
 - Handheld RFID readers
 - RFID portal
 - RFID "Smart" Shelf
- Real-Time RFID Location and Tracking
 - Ultra-Wideband (UWB)
- Surface Acoustic Wave (SAW) RFID
- Bionet Middleware

ISS Inventory Management Present State

- ~ 10,000 items are tracked with the Inventory Management System (IMS) software application
- Hand-held optical barcode reader used for inventory audits
 - Crew/Cargo Transfer Bags must have Ziploc bag contents removed, audited, replaced:
 - ~ 20 mins crew time, 1 CTB/crew/day
- ~ 500 CTBs on ISS at any given time
 (2008)

RFID Space Inventory Introduction: Handheld Readers

- Handheld RFID readers are likely to be the first operational RFID system on ISS
 - Will have dual barcode capability, also, to facilitate transition
- Read accuracies < 100% for single CTB read, but fairly effective when reader scanned or "painted" around CTB exterior
- Requires 20s/CTB read and little vehicle infrastructure (battery powered with 802.11 capability)
- Tested on CTBs (10in. x 17in. x 9.5in) containing tagged Ziplock bags filled with tagged personal items (52 tags total)
- Tested on Ambulatory Medical Packs (AMPs 12.5in. x 24.5in. x 8in.) with sub-kits filled with tagged pharmaceutical items (330 tags total)

Handheld RFID Reader Evaluation

Four commercially available readers tested by five different individuals (I1-I5):

CTB tags (52 tags total)

	11	12	13	14	15	average	%
Dandon 4 20 dDm	40	40	40	40	40	_	
Reader 1 30 dBm	48	48	49	48	48	48.2	92.7%
Reader 2 28 dBm	48	48	47	48	47	47.6	91.5%
Reader 3 30 dBm	42	42	44	45	43	43.2	83.1%
Reader 4 30 dBm	48	48	48	49	48	48.2	92.7%

AMP tags (330 tags total)

	11	12	13	I 4	average	%
	100 Tel 11	0.10	New York State	Seek consequent		Market A
Reader 2 28 dBm	267	264	266	263	265	80.3%
Reader 3 30 dBm	122	125	130	120	124.3	37.7%
Reader 1 30 dBm	281	276	282	280	279.8	84.8%
Reader 4 30 dBm	245	239	238	226	237	71.8%

Portal-based RFID Inventory Management

More automation desired for viable RFID inventory

system

Portal-based interrogator reads CTBs entering/exiting habitat

Requirements:

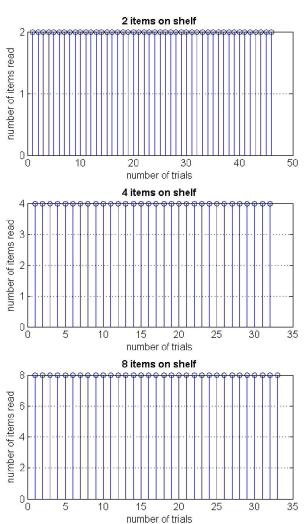
- High read accuracy
- Low power (→ triggered operation)
- Tag directionality determined
- Four antenna system (two external, two internal) implemented in habitat mockup
- Pressure pad on porch used to trigger tag reads

RFID Portal Evaluation

- CTB (52 tagged items) carried on left, right, and in front of test subject
- Reader tested in "continuously on" and "triggered" modes
- Transmit power of 30 dBm used for all tests
- CTB carried starting 40 feet out, pressure mat mounted five feet out
- Results averaged over five trials

accuracy vs. position

	Avg. front	Avg. right	Avg. left
	75.50	75.00/	75 70/
Item level	75.5%	75.3%	75.7%
Ziplock level	95.1%	94.7%	93.7%


accuracy vs. operation mode

	Avg. (triggered)	Avg. (continuous)
Item level	76%	75%
Ziplock level	95%	94%

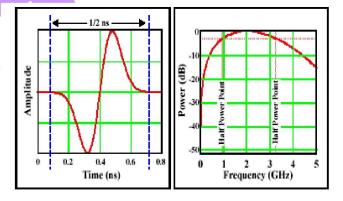
RFID "Smart" Shelves and Receptacles

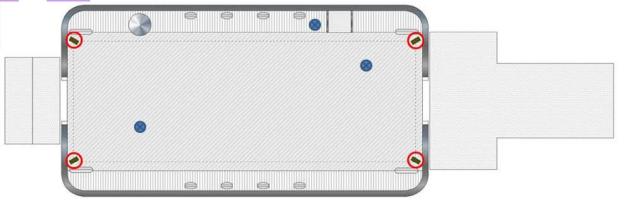
8

10/7/.

RFID "Smart" Shelves and Receptacles

- RFID reads on densely packed containers difficult
 - high metal /liquid content esp. challenging
- RFID smart containers can provide supplemental inventory data
 - smart shelve: additive (log items into database as added)
 - smart trash can: reductive (remove items from database as containers discarded)
- Testing of RFID trash can indicates near-100% read accuracy
 - Ziploc bags, food vacuum packs, conductive drink pouches, battery packs, pharmaceuticals, etc.
- Work on zero-g RFID trash can in progress





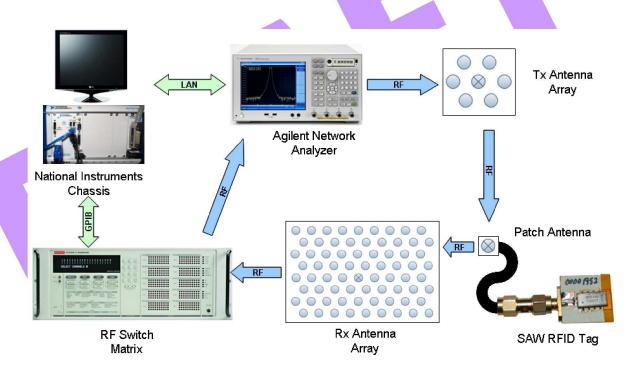
RFID for Real-Time Location and Tracking

- Ultra-Wideband (UWB) active-tag RFID technology
 - Transmits sub-nanosecond, high bandwidth impulses (~GHz)
 - low power spectral density make system non-interfering
 - short pulses reduce fading and multipath effects
- Tested UWB real-time location system (Sapphire DART by Multispectral Solutions)
- UWB tags are transmit-only devices
 - each sends unique pulse-train ID (one pulse/second)
 - 30cm (1 ft.) tracking accuracy
 - read ranges up to 90 m
 - tag battery life > 7 yrs

UWB impulse signal (time and freq.)

Surface Acoustic Wave (SAW) RFID

- SAW RFID tags do not rectify incident electromagnetic power
 - modulate, re-radiate interrogation signal using series of reflectors
 - operate at much lower interrogator transmit power, much longer range (compared to IC tags)
 - can incorporate telemetry readings (e.g., temperature)
 - tolerate temperature, radiation, shock better than IC tags
- SAW tags being investigated for planetary ops support (Passive Adaptive RFID Sensor Equipment PARSEQ)
 - sensing surface of habitation module remotely
 - interrogating lunar road signs, dropping
 "breadcrumbs" for navigation
 - locating expended equipment in salvage yards
 - tracking crew/vehicles in habitat proximity
 - providing navigation aids to landers



Avionic Systems DivisionASA Johnson Space Center, Houston, Texas

Custom SAW Tag Interrogator

- Ranges over 100 feet achieved with 100 mW transmit power
- Digital adaptive beamforming to enable multi-cluster interrogation
- Over 10 tags read per cluster
- Angle-of-arrival, range, and temperature returned from SAW tag

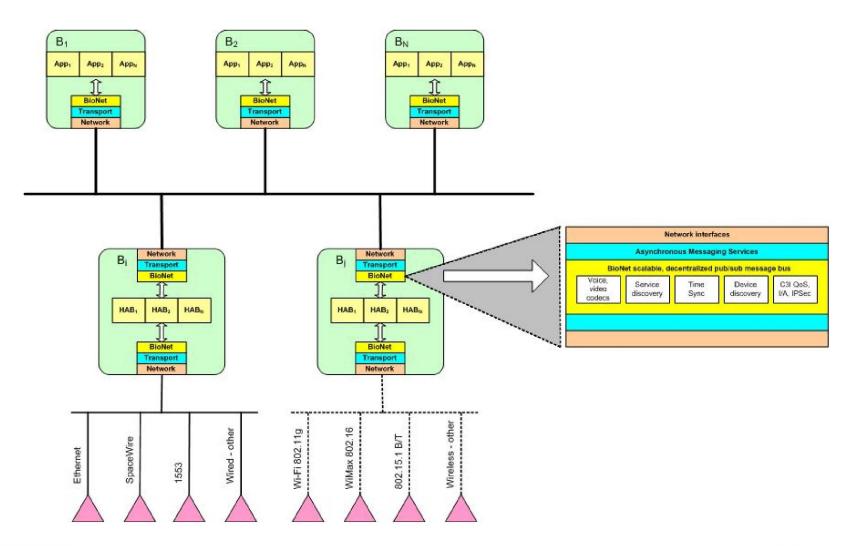
BioNet Middleware

- Long-term habitat operations likely will entail:
 - 1. both wired and wireless data-producing hardware
 - 2. all hardware requirements **not** known a priori
- NASA Command, Control, Communications, and Information (C3I) Interoperability specification proposes an architecture to co-ordinate operations among subsystems developed by many different sources
- BioNet middleware is preliminary C3I instantiation used in NASA-JSC lunar habitat wireless test bed:
 - integrates wired/wireless data-producing hardware
 - provides application development framework to separate design of data production and data consumption subsystems

BioNet Middleware

- BioNet focuses on enabling a "system of systems"
- Provides publish/subscribe asynchronous messaging between distributed applications and distributed data-generating endpoint sensors/systems
- Facilitates incorporation of heterogeneous wired and wireless sensing/control devices into unified data system with standardized application interface

BioNet Middleware


- Provides software development framework, standard services, and network communications for distributed applications
- Hides complexity of (heterogeneous) network communication from developers who want read/write without regards to lower-layer communications specifics
- Provides critical integrated system services:
 - naming
 - device discovery
 - service discovery
 - security
 - data compression
 - data grouping

ASA Johnson Space Center, Houston, Texas

NASA

BioNet Middleware

Conclusion/Forward Work

- Desire to have as much functionality as possible with as few RFID protocols/interrogators required
 - On-going work for real-time location using EPCglobal Class 1, Gen 2 (UHF)
- Handheld RFID technology provides acceptable accuracy when "painted" over CTB
- RFID trash receptacle appears promising for wrapper tracking
 - Near 100% accuracy
- Battery-power UWB RFID tags and system provides 12 inch accuracy
 - Possible use for larger, critical items
- SAW-based RFID could find niche applications for NASA
 - Longer range and extreme environments (e.g., lunar surface, ground facilities)
 - Capability to provide sensor telemetry
- BioNet middleware has proven highly effective for integration of a large number of disparate devices and networks